An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization

نویسندگان

چکیده

In this paper, an adaptive proximal bundle method is proposed for a class of nonconvex and nonsmooth composite problems with inexact information. The are the sum finite convex function information function. For function, we design convexification technique ensure linearization errors its augment to be nonnegative. Then, regarded as approximate primal problem. adopt disaggregate strategy regard cutting plane models model give method. Meanwhile, information, utilize noise management update parameter reduce influence can obtain solution. Two polynomial functions six DC referred in numerical experiment. preliminary results show that our algorithm effective reliable.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proximal Bundle Method for Nonconvex Functions with Inexact Oracles

For a class of nonconvex nonsmooth functions, we consider the problem of computing an approximate critical point, in the case of inexact oracles. The latter means that only an inexact function value and an inexact subgradient are available, at any given point. We assume that the errors in function and subgradient evaluations are merely bounded, and in principle need not vanish in the limit. We ...

متن کامل

A proximal bundle method for nonsmooth nonconvex functions with inexact information

For a class of nonconvex nonsmooth functions, we consider the problem of computing an approximate critical point, in the case when only inexact information about the function and subgradient values is available. We assume that the errors in function and subgradient evaluations are merely bounded, and in principle need not vanish in the limit. We examine the redistributed proximal bundle approac...

متن کامل

A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization

We analyze stochastic gradient algorithms for optimizing nonconvex, nonsmooth finite-sum problems. In particular, the objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a possibly non-differentiable but convex component. We propose a proximal stochastic gradient algorithm based on variance reduction, called ProxSVRG+. The algorithm is ...

متن کامل

A Doubly Inexact Interior Proximal Bundle Method for Convex Optimization

We propose a version of bundle method for minimizing a non-smooth convex function. Our bundle method have three features. In bundle method, we approximate the objective with some cutting planes and minimize the model with some stabilizing term. Firstly, it allows inexactness in this minimization. At the same time, evaluations of the objective and the subgradient are also required to generate th...

متن کامل

A Redistributed Proximal Bundle Method for Nonconvex Optimization

Proximal bundle methods have been shown to be highly successful optimization methods for unconstrained convex problems with discontinuous first derivatives. This naturally leads to the question of whether proximal variants of bundle methods can be extended to a nonconvex setting. This work proposes an approach based on generating cutting-planes models, not of the objective function as most bund...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9080874